BACKGROUND Current imaging modalities are often incapable of identifying nociceptive sources of low back pain (LBP). We aimed to characterize these by means of positron emission tomography/computed tomography (PET/CT) of… Click to show full abstract
BACKGROUND Current imaging modalities are often incapable of identifying nociceptive sources of low back pain (LBP). We aimed to characterize these by means of positron emission tomography/computed tomography (PET/CT) of the lumbar spine region applying tracers 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) targeting inflammation and active microcalcification, respectively. METHODS Using artificial intelligence (AI)-based quantification, we compared PET findings in two sex- and age-matched groups, a case group of 7 males and 5 females, mean age 45±14 years, with ongoing LBP and a similar control group of 12 pain-free individuals. PET/CT scans were segmented into three distinct volumes of interest (VOIs): lumbar vertebral bodies, facet joints, and intervertebral discs. Maximum, mean, and total standardized uptake values (SUVmax, SUVmean, and SUVtotal) for FDG and NaF uptake in the 3 VOIs were measured and compared between groups. Holm-Bonferroni correction was applied to adjust for multiple testing. RESULTS FDG uptake was slightly higher in most locations of the LBP group including higher SUVmean in the intervertebral discs (0.96±0.34 vs. 0.69±0.15). All NaF uptake values were higher in cases, including higher SUVmax in the intervertebral discs (11.63±3.29 vs. 9.45±1.32) and facet joints (14.98±6.55 vs. 10.60±2.97). CONCLUSION Observed inter-group differences suggest acute inflammation and microcalcification as possible nociceptive causes of LBP. AI-based quantification of relevant lumbar VOIs in PET/CT scans of LBP patients and controls appears to be feasible. These promising, early findings warrant further investigation and confirmation. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.