LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Viscous Ricci dark energy and generalized second law of thermodynamics in modified f(R, T) gravity

Photo from wikipedia

The motivation of this paper is to study the bulk viscosity effect in Ricci dark energy (RDE) model within the framework of modified f(R, T) gravity, where R is the… Click to show full abstract

The motivation of this paper is to study the bulk viscosity effect in Ricci dark energy (RDE) model within the framework of modified f(R, T) gravity, where R is the Ricci scalar and T is the trace of the energy–momentum tensor. As most studies assume that the universe is filled with a perfect fluid, viscosity is expected to present at least during some stages, especially in the early stage of the evolution of the universe but it could still become significant in the future. We assume the universe is filled with viscous RDE and pressureless dark matter. We consider the total bulk viscous coefficient is in the form of [Formula: see text][Formula: see text]H, where [Formula: see text] and [Formula: see text] are the constants. We obtain the solutions to the modified field equations by assuming a form f(R, T) = R [Formula: see text] T, where [Formula: see text] is a constant. We find the scale factor and deceleration parameter, and classify all possible evolutions of the universe. We briefly discuss the future finite-time singularity and show that the Big Rip singularity appears in viscous RDE model. We investigate two geometrical diagnostics, statefinder parameter and Om to analyze the dynamics of evolution of the universe. The trajectories of statefinder parameter reveal that the model behaves like quintessence for small [Formula: see text], and for large [Formula: see text] it shows the Chaplygin gas-like. However, in late time both the models approach [Formula: see text]CDM. The model shows a transition from decelerated phase to accelerated phase. Similarly, the Om analysis reveals that the model behaves like quintessence for small [Formula: see text] and phantom-like for large [Formula: see text]. We extend our study to analyze the time evolution of the total entropy and generalized second law of thermodynamics of viscous RDE model in f(R, T) theory inside the apparent horizon. Our study shows that the generalized second law of thermodynamics always preserves in viscous RDE model in a region enclosed by the apparent horizon under the suitable constraints of viscous coefficients.

Keywords: generalized second; second law; thermodynamics; see text; formula see

Journal Title: Modern Physics Letters A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.