LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MDH1 and MDH2 Promote Cell Viability of Primary AT2 Cells by Increasing Glucose Uptake

Photo by nci from unsplash

Background Acute lung injury (ALI) is a clinical disease with high morbidity and mortality, with limited treatment means. For primary alveolar epithelial type II (AT2) cells, glycolysis is an essential… Click to show full abstract

Background Acute lung injury (ALI) is a clinical disease with high morbidity and mortality, with limited treatment means. For primary alveolar epithelial type II (AT2) cells, glycolysis is an essential bioenergetic process. However, the significance of AT2 cell glycolysis in sepsis ALI remains unknown. Methods and Results In the current study, based on microarray analysis, real-time quantitative PCR, and Western blotting, we found that the hsa00020: citrate cycle pathway was inactivated, specifically its downstream gene: malate dehydrogenase 1 (MDH1) and MDH2 in ALI. In this context, lipopolysaccharides (LPS) were used to construct the septic-ALI mouse model and the biological function of MDH1 and MDH2 in primary alveolar epithelial type II (AT2) cells was explored. Through CCK-8, EdU, transwell, and apoptosis assays, we found that MDH1 and MDH2 promoted the cell vitality of AT2 cells, which relied on MDH1 and MDH2 to promote the glucose intake of AT2 cells. Conclusion Overall, these findings suggest that targeting MDH1/MDH2-mediated AT2 cell glycolysis may be a potential strategy for ALI patients.

Keywords: cell; at2 cells; mdh1 mdh2

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.