LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring Surface-Enhanced Raman Spectroscopy (SERS) Characteristic Peaks Screening Methods for the Rapid Determination of Chlorpyrifos Residues in Rice

Photo from wikipedia

Surface-enhanced Raman spectroscopy (SERS), coupled with characteristic peak screening methods, was developed for analyzing chlorpyrifos (CM) pesticide residues in rice. Au nanoparticles (AuNPs) were prepared as Raman signal enhancement. Magnesium… Click to show full abstract

Surface-enhanced Raman spectroscopy (SERS), coupled with characteristic peak screening methods, was developed for analyzing chlorpyrifos (CM) pesticide residues in rice. Au nanoparticles (AuNPs) were prepared as Raman signal enhancement. Magnesium sulfate (MgSO4), primary secondary amine (PSA), and C18 were used to purify the rice extraction. A successive projections algorithm (SPA) was performed to identify the optimal characteristic peaks of CM in rice from full Raman spectroscopy. Support vector machine (SVM) and partial least squares (PLS) were implemented to investigate the quantitative analysis models. The results demonstrated that six Raman peaks such as 671, 834, 1016, 1114, 1436, and 1444 cm−1 were selected by the SPA and SVM models and had better performance using six peaks (only 0.92% of the full spectra variables) with R2 p = 0.97, RMSEP = 2.89 and RPD = 4.26, and the experiment time for a sample was accomplished within 10 min. Recovery for five unknown concentration samples was 97.45–103.96%, and T-test results also displayed no obvious differences between the measured value and the predicted value. The study stated that SERS, combined with characteristic peak screening methods, can be applied to rapidly monitor the chlorpyrifos residue in rice. Graphical Abstract

Keywords: screening methods; spectroscopy; surface enhanced; enhanced raman; raman spectroscopy; chlorpyrifos

Journal Title: Applied Spectroscopy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.