LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional dynamic Green’s functions in exponentially graded transversely isotropic tri-material composites

Photo by mitchel3uo from unsplash

This paper presents an analytical formulation for deriving the three-dimensional (3D) elastodynamic Green’s functions of functionally graded transversely isotropic tri-material composite under time-harmonic loading. With the aid of a complete… Click to show full abstract

This paper presents an analytical formulation for deriving the three-dimensional (3D) elastodynamic Green’s functions of functionally graded transversely isotropic tri-material composite under time-harmonic loading. With the aid of a complete set of displacement potentials, Fourier expansions, and Hankel integral transforms, displacement and stress components of 3D point-load, patch-load, and ring-load are obtained in the form of complex-plane infinite line-integrals. By virtue of a reliable and fast numerical scheme, i.e., the contour integration method, they are numerically treated, and its accuracy is achieved by comparison with some special cases. Finally, some numerical results are selected to demonstrate the influences of the material inhomogeneity and vibration frequency on the displacement and stress components. Particularly, the dependency of the stress transfer process at the interface of the mediums on the degree of inhomogeneity is presented, which is of high importance in evaluating the performance of composite materials.

Keywords: green functions; graded transversely; transversely isotropic; tri material; three dimensional; isotropic tri

Journal Title: Mathematics and Mechanics of Solids
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.