LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photo-Fenton Degradation of AO7 and Photocatalytic Reduction of Cr(VI) over CQD-Decorated BiFeO3 Nanoparticles Under Visible and NIR Light Irradiation

Photo by picasso_the_line_art from unsplash

In this work, the carbon quantum dot (CQD)–decorated BiFeO3 nanoparticle photocatalysts were prepared by a hydrothermal method. The TEM observation and XPS characterization indicate that the CQDs are well anchored… Click to show full abstract

In this work, the carbon quantum dot (CQD)–decorated BiFeO3 nanoparticle photocatalysts were prepared by a hydrothermal method. The TEM observation and XPS characterization indicate that the CQDs are well anchored on the surface of BiFeO3 nanoparticles. Acid orange 7 (AO7) and hexavalent chromium (Cr(VI)) were chosen as the model pollutants to investigate the photocatalytic/photo-Fenton degradation and photocatalytic reduction performances of the as-prepared CQD/BiFeO3 composites under visible and near-infrared (NIR) light irradiation. Compared with bare BiFeO3 nanoparticles, the CQD/BiFeO3 composites exhibit significantly improved photocatalytic and photo-Fenton catalytic activities. Moreover, the composites possess good catalytic stability. The efficient photogenerated charges separation in the composites was demonstrated by the photocurrent response and electrochemical impedance spectroscopy (EIS) measurements. The main active species involved in the catalytic degradation reaction were clarified by radicals trapping and detection experiments. The underlying photocatalytic and photo-Fenton mechanisms are systematically investigated and discussed.

Keywords: photo fenton; bifeo3 nanoparticles; degradation; cqd decorated

Journal Title: Nanoscale Research Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.