LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploration of a diversity of computational and statistical measures of association for genome-wide genetic studies

Photo from wikipedia

BackgroundThe principal line of investigation in Genome Wide Association Studies (GWAS) is the identification of main effects, that is individual Single Nucleotide Polymorphisms (SNPs) which are associated with the trait… Click to show full abstract

BackgroundThe principal line of investigation in Genome Wide Association Studies (GWAS) is the identification of main effects, that is individual Single Nucleotide Polymorphisms (SNPs) which are associated with the trait of interest, independent of other factors. A variety of methods have been proposed to this end, mostly statistical in nature and differing in assumptions and type of model employed. Moreover, for a given model, there may be multiple choices for the SNP genotype encoding. As an alternative to statistical methods, machine learning methods are often applicable. Typically, for a given GWAS, a single approach is selected and utilized to identify potential SNPs of interest. Even when multiple GWAS are combined through meta-analyses within a consortium, each GWAS is typically analyzed with a single approach and the resulting summary statistics are then utilized in meta-analyses.ResultsIn this work we use as case studies a Type 2 Diabetes (T2D) and a breast cancer GWAS to explore a diversity of applicable approaches spanning different methods and encoding choices. We assess similarity of these approaches based on the derived ranked lists of SNPs and, for each GWAS, we identify a subset of representative approaches that we use as an ensemble to derive a union list of top SNPs. Among these are SNPs which are identified by multiple approaches as well as several SNPs identified by only one or a few of the less frequently used approaches. The latter include SNPs from established loci and SNPs which have other supporting lines of evidence in terms of their potential relevance to the traits.ConclusionsNot every main effect analysis method is suitable for every GWAS, but for each GWAS there are typically multiple applicable methods and encoding options. We suggest a workflow for a single GWAS, extensible to multiple GWAS from consortia, where representative approaches are selected among a pool of suitable options, to yield a more comprehensive set of SNPs, potentially including SNPs that would typically be missed with the most popular analyses, but that could provide additional valuable insights for follow-up.

Keywords: genome wide; snps; diversity computational; exploration diversity; gwas

Journal Title: BioData Mining
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.