LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kolyvagin systems and Iwasawa theory of generalized Heegner cycles

Photo from academic.microsoft.com

Iwasawa theory of Heegner points on abelian varieties of GL_2 type has been studied by, among others, Mazur, Perrin-Riou, Bertolini and Howard. The purpose of this paper is to describe… Click to show full abstract

Iwasawa theory of Heegner points on abelian varieties of GL_2 type has been studied by, among others, Mazur, Perrin-Riou, Bertolini and Howard. The purpose of this paper is to describe extensions of some of their results in which abelian varieties are replaced by the Galois cohomology of Deligne's p-adic representation attached to a modular form of even weight >2. In this setting, the role of Heegner points is played by higher-dimensional Heegner-type cycles that have been recently defined by Bertolini, Darmon and Prasanna. Our results should be compared with those obtained, via deformation-theoretic techniques, by Fouquet in the context of Hida families of modular forms.

Keywords: theory generalized; kolyvagin systems; generalized heegner; systems iwasawa; heegner; iwasawa theory

Journal Title: Kyoto Journal of Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.