Double integrating sphere measurements obtained from thin ex vivo tissues provides more spectral information and hence allows full estimation of all basic optical properties (OPs) theoretically. However, the ill-conditioned nature… Click to show full abstract
Double integrating sphere measurements obtained from thin ex vivo tissues provides more spectral information and hence allows full estimation of all basic optical properties (OPs) theoretically. However, the ill-conditioned nature of the OP determination increases excessively with the reduction in tissue thickness. Therefore, it is crucial to develop a model for thin ex vivo tissues that is robust to noise. Herein, we present a deep learning solution to precisely extract four basic OPs in real-time from thin ex vivo tissues, leveraging a dedicated cascade forward neural network (CFNN) for each OP with an additional introduced input of the refractive index of the cuvette holder. The results show that the CFNN-based model enables accurate and fast evaluation of OPs, as well as robustness to noise. Our proposed method overcomes the highly ill-conditioned restriction of OP evaluation and can distinguish the effects of slight changes in measurable quantities without any a priori knowledge.
               
Click one of the above tabs to view related content.