LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FMCW LiDAR with an FM nonlinear kernel function for dynamic-distance measurement.

Photo by hudsoncrafted from unsplash

Frequency-modulated continuous-wave (FMCW) LiDAR is an absolute-distance measurement technology with the advantages of high-precision, non-cooperative target measurement capabilities and the ability to measure distance and speed simultaneously. However, the existing… Click to show full abstract

Frequency-modulated continuous-wave (FMCW) LiDAR is an absolute-distance measurement technology with the advantages of high-precision, non-cooperative target measurement capabilities and the ability to measure distance and speed simultaneously. However, the existing range extraction method for FMCW LiDAR is associated with problems, such as requiring a high sample rate and dispersion mismatch. Here, we propose and demonstrate a dynamic range extraction method based on an FM nonlinear kernel function, which improves measurement accuracy without the use of a long auxiliary interferometer (as is required for the traditional method), reduces the influence of dispersion mismatch and the Doppler effect caused by target movement and can simultaneously measure the target motion information dynamically, with a lower measurement error than that of the existing range extraction method under the same conditions.

Keywords: distance measurement; measurement; fmcw lidar; nonlinear kernel

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.