LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acceleration of chemical shift encoding-based water fat MRI for liver proton density fat fraction and T2* mapping using compressed sensing

Photo from wikipedia

Objectives To evaluate proton density fat fraction (PDFF) and T2* measurements of the liver with combined parallel imaging (sensitivity encoding, SENSE) and compressed sensing (CS) accelerated chemical shift encoding-based water-fat… Click to show full abstract

Objectives To evaluate proton density fat fraction (PDFF) and T2* measurements of the liver with combined parallel imaging (sensitivity encoding, SENSE) and compressed sensing (CS) accelerated chemical shift encoding-based water-fat separation. Methods Six-echo Dixon imaging was performed in the liver of 89 subjects. The first acquisition variant used acceleration based on SENSE with a total acceleration factor equal to 2.64 (acquisition labeled as SENSE). The second acquisition variant used acceleration based on a combination of CS with SENSE with a total acceleration factor equal to 4 (acquisition labeled as CS+SENSE). Acquisition times were compared between acquisitions and proton density fat fraction (PDFF) and T2*-values were measured and compared separately for each liver segment. Results Total scan duration was 14.5 sec for the SENSE accelerated image acquisition and 9.3 sec for the CS+SENSE accelerated image acquisition. PDFF and T2* values did not differ significantly between the two acquisitions (paired Mann-Whitney and paired t-test P>0.05 in all cases). CS+SENSE accelerated acquisition showed reduced motion artifacts (1.1%) compared to SENSE acquisition (12.3%). Conclusion CS+SENSE accelerates liver PDFF and T2*mapping while retaining the same quantitative values as an acquisition using only SENSE and reduces motion artifacts.

Keywords: density fat; fat fraction; acceleration; sense; proton density; acquisition

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.