LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design for quality: reconfigurable flat optics based on active metasurfaces

Photo from academic.microsoft.com

Abstract Optical metasurfaces, planar subwavelength nanoantenna arrays with the singular ability to sculpt wavefront in almost arbitrary manners, are poised to become a powerful tool enabling compact and high-performance optics… Click to show full abstract

Abstract Optical metasurfaces, planar subwavelength nanoantenna arrays with the singular ability to sculpt wavefront in almost arbitrary manners, are poised to become a powerful tool enabling compact and high-performance optics with novel functionalities. A particularly intriguing research direction within this field is active metasurfaces, whose optical response can be dynamically tuned postfabrication, thus allowing a plurality of applications unattainable with traditional bulk optics. Designing reconfigurable optics based on active metasurfaces is, however, presented with a unique challenge, since the optical quality of the devices must be optimized at multiple optical states. In this article, we provide a critical review on the active meta-optics design principles and algorithms that are applied across structural hierarchies ranging from single meta-atoms to full meta-optical devices. The discussed approaches are illustrated by specific examples of reconfigurable metasurfaces based on optical phase-change materials.

Keywords: based active; optics; optics based; active metasurfaces; design quality

Journal Title: Nanophotonics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.