LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible Hollow Human Serum Albumin-Catalase Nanocapsules with High Accumulation and Uptake Ability for Enhanced Photodynamic Therapy

Photo by paipai90 from unsplash

Introduction Photodynamic therapy (PDT) has attracted increasing attention for tumor treatment because of its minimal invasiveness and specific spatiotemporal selectivity. However, insufficient tumor accumulation and low cellular uptake of photosensitizers… Click to show full abstract

Introduction Photodynamic therapy (PDT) has attracted increasing attention for tumor treatment because of its minimal invasiveness and specific spatiotemporal selectivity. However, insufficient tumor accumulation and low cellular uptake of photosensitizers limit its therapeutic efficacy. Methods In this study, flexible hollow human serum albumin/catalase nanocapsules (HSA/CATs) were created using a core-assisted protein-coating method and combined with the photosensitizer chlorin e6 (HSA/CAT@Ce6) for PDT. Results and Discussion Transmission electron microscopy (TEM) images demonstrate that HSA/CAT nanocapsules are flexible, with a uniform diameter (310 nm) and a well-defined hollow structure. Thanks to their flexibility, HSA/CAT@Ce6 nanocapsules show a higher cellular uptake than rigid nanoparticles. The nanocapsules effectively generate reactive oxygen species (ROS) in 4T1 cells because of their high cellular uptake and catalytic capacity, remarkably enhancing their in vitro PDT efficacy. In addition, the in vivo tumor accumulation of HSA/CAT@Ce6 nanocapsules is significantly larger than that of rigid nanoparticles and Ce6, meaning they are highly effective in tumor cell ablation. This demonstrates that our flexible nanoplatform holds great promise for enhancing PDT of tumor.

Keywords: hollow human; accumulation; photodynamic therapy; human serum; flexible hollow; tumor

Journal Title: International Journal of Nanomedicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.