LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Class A GPCRs: Structure, Function, Modeling and Structure-based Ligand Design.

Photo from wikipedia

G protein-coupled receptors (GPCRs), especially the class A, are the most heavily investigated drug targets in the pharmaceutical industry. Tremendous efforts have been made by both industry and academia to… Click to show full abstract

G protein-coupled receptors (GPCRs), especially the class A, are the most heavily investigated drug targets in the pharmaceutical industry. Tremendous efforts have been made by both industry and academia to understand the molecular structure and function of this large family of transmembrane proteins. Our understanding in GPCR activation has evolved from the classical inactive-active two-state model to a complex view of GPCR conformational ensemble associated with multiple interacting partners such as ligands, allosteric modulators, ions and downstream signaling proteins. New drug targets and ligand design strategies are unveiled. Meanwhile, breakthroughs in X-ray crystallography have resulted in high-resolution structures of over 30 GPCRs, providing structural basis for drug design and functional studies. These enabled wide applications of computational approaches in GPCR research that have led to several groundbreaking studies in the last few years. While a large fraction of human GPCRs has yet to be crystallized, homology modeling plays a pivotal role in the simulation of these GPCRs. Here, we review the recent updates on class A GPCR structure and function, with a focus on the applications and perspectives of molecular modeling in GPCR ligand design.

Keywords: ligand design; class; structure; structure function; design

Journal Title: Current pharmaceutical design
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.