Background: Finite element analysis (FEA) is one of the best methods for evaluating the stress distribution of restorations, such as fixed partial dentures. The development of resin cement has transformed… Click to show full abstract
Background: Finite element analysis (FEA) is one of the best methods for evaluating the stress distribution of restorations, such as fixed partial dentures. The development of resin cement has transformed prosthesis bonding and retention properties. Resin-bonded fixed partial dentures (RBFPD) have been considered minimally invasive treatment options for the prosthetic rehabilitation of single missing teeth. Objectives: The aim of this study was to evaluate the stress load and distribution in four different designs of acid-etched RBFPDs using FEA. Materials and Methods: The designs included standard tooth preparation principles and additional features. The first premolar and first molar abutments replaced the missing second premolar. Designs 1, 2, 3, and 4 included (1) lingual wings and occlusal rests; (2) wings and proximal slices; (3) wings, rests, and grooves; and (4) wings, rests, grooves, and occlusal coverage. The prepared models were restored with RBFPDs. A load of 100 N was applied to the central groove of the pontic to simulate occlusal forces. The materials used in the models were considered to be isotropic, homogeneous, and linearly elastic. FEA was used to reveal stresses acting on the abutment, bone, and connector in all prosthesis designs. Results: The stresses transmitted to the abutment and bones were lowest for design 3, using wings, rests, and grooves. The stresses acting on the connector were the weakest in design 2. The stresses transmitted to the abutment and bone were highest in designs 1 and 4. The stresses transmitted to the connector were highest in design 3. Conclusion: The wings, rests, and grooves design is possibly the ideal and conservative tooth preparation design to receive a posterior RBFPD. This design transmits less stress to the abutments and less bone resorption in the FEA. It is most likely to be successful in the clinical provision and ensures the longevity of the prosthesis.
               
Click one of the above tabs to view related content.