LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interfacial Assemble of Prussian Blue Analog to Access Hierarchical FeNi (oxy)-Hydroxide Nanosheets for Electrocatalytic Water Splitting

Photo from wikipedia

Developing facile methods for the synthesis of active and stable electrocatalysts is vitally important to realize overall water splitting. Here, we demonstrate a practical method to obtain FeNiOOH nanosheets on… Click to show full abstract

Developing facile methods for the synthesis of active and stable electrocatalysts is vitally important to realize overall water splitting. Here, we demonstrate a practical method to obtain FeNiOOH nanosheets on nickel foam (NF) as bifunctional electrocatalyst by growing a FeCo Prussian blue analog with further in situ oxidation under ambient conditions. The binder-free, self-standing FeNiOOH/NF electrode with hierarchical nanostructures requires low overpotentials of 260 mV and 240 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and hydrogen evolution reaction, respectively, in 1.0 M KOH solution. Therefore, an alkaline water electrolyzer constructed by bifunctional FeNiOOH/NF electrode as both anode and cathode delivers 50 mA cm−2 under a cell voltage of 1.74 V with remarkable stability, which outperforms the IrO2-Pt/C-based electrolyzer. The excellent performance could be ascribed to the superior FeNiOOH intrinsic activity and the hierarchical structure. This work provides a cost-efficient surface engineering method to obtain binder-free, self-standing bifunctional electrocatalyst on commercial NF, which could be further extended to other energy and environment applications.

Keywords: water; blue analog; prussian blue; water splitting

Journal Title: Frontiers in Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.