LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial Variation in Soil Base Saturation and Exchangeable Cations in Tropical and Subtropical China

Photo by corey_lyfe from unsplash

In the last 30 years, severe soil acidification has been found in China due to acid deposition and nitrogen fertilizer overuse. Understanding the spatial pattern and vertical variations in base… Click to show full abstract

In the last 30 years, severe soil acidification has been found in China due to acid deposition and nitrogen fertilizer overuse. Understanding the spatial pattern and vertical variations in base saturation percentage (BSP) and exchangeable cations (Ca2+, Mg2+, K+, Na+, H+ and Al3+) can directly benefit fertilization management and ecological protection. Here, 1253 soil profiles were surveyed in tropical and subtropical regions in China to investigate the spatial variations in BSP and exchangeable cations at three soil depths of 0–20 cm, 20–50 cm and 50–100 cm. The spatial distributions were interpolated by using advanced machine learning techniques. We found that the exchangeable Ca2+ (Exch. Ca), Mg2+ (Exch. Mg) and BSP were significantly higher in paddy fields and uplands than in forests and gardens, regardless of soil depth, while the exchangeable K (Exch. K) did not significantly differ between various land-use types. The Exch. Ca and BSP in Anthrosols were significantly higher than those in Ferrosols, Argosols and Cambosols in the three soil layers. The spatial prediction results indicated that exchangeable cations and BSP were generally characterized by strong heterogeneity, and the Exch. Ca, Exch. K and exchangeable H+ (Exch. H) contents and BSP declined with increasing soil depth. This study helps us understand the spatial variation in BSP and exchangeable cations in the study area and benefits fertilization management and environmental protection.

Keywords: exch; exchangeable cations; tropical subtropical; soil; bsp; base saturation

Journal Title: Agronomy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.