LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Improved Stereo Matching Algorithm for Vehicle Speed Measurement System Based on Spatial and Temporal Image Fusion

Photo from wikipedia

This paper proposes an improved stereo matching algorithm for vehicle speed measurement system based on spatial and temporal image fusion (STIF). Firstly, the matching point pairs in the license plate… Click to show full abstract

This paper proposes an improved stereo matching algorithm for vehicle speed measurement system based on spatial and temporal image fusion (STIF). Firstly, the matching point pairs in the license plate area with obviously abnormal distance to the camera are roughly removed according to the characteristic of license plate specification. Secondly, more mismatching point pairs are finely removed according to local neighborhood consistency constraint (LNCC). Thirdly, the optimum speed measurement point pairs are selected for successive stereo frame pairs by STIF of binocular stereo video, so that the 3D points corresponding to the matching point pairs for speed measurement in the successive stereo frame pairs are in the same position on the real vehicle, which can significantly improve the vehicle speed measurement accuracy. LNCC and STIF can be used not only for license plate, but also for vehicle logo, light, mirror etc. Experimental results demonstrate that the vehicle speed measurement system with the proposed LNCC+STIF stereo matching algorithm can significantly outperform the state-of-the-art system in accuracy.

Keywords: speed measurement; vehicle; system; vehicle speed

Journal Title: Entropy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.