LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Light Intensity and Girdling Treatments on the Production of Female Cones in Japanese Larch (Larix kaempferi (Lamb.) Carr.): Implications for the Management of Seed Orchards

Photo from wikipedia

To ensure sustainable forestry, it is important to establish an efficient management procedure for improving the seed production capacity of seed orchards. In this study, we evaluated the effects of… Click to show full abstract

To ensure sustainable forestry, it is important to establish an efficient management procedure for improving the seed production capacity of seed orchards. In this study, we evaluated the effects of girdling and increasing light intensity on female cone production in an old L. kaempferi (Lamb.) Carr. seed orchard. We also evaluated whether there is a genotype-specific reproductive response to these factors among clones. The results showed that female cone production was augmented by girdling and increasing light intensity. There was a difference in the effectiveness of girdling treatment levels, and the probability of producing female cones increased markedly at higher girdling levels. At light intensities where the relative photosynthetic photon flux density was higher than 50%, more than half of the trees tended to produce female cones, even in intact (ungirdled) trees, and the genotype-specific response to light intensity was more apparent in less-reproductive clones. These findings suggested that girdling less-reproductive trees combined with increasing light intensity was an effective management strategy for improving cone production in old seed orchards.

Keywords: seed; production; light intensity; seed orchards; female cones

Journal Title: Forests
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.