LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of ECAP Temperature on the Microstructure and Properties of a Rolled Rare Earth Magnesium Alloy

Photo from wikipedia

Deformation of an as-rolled rare earth Mg-2Y-0.6Nd-0.6Zr alloy, at different temperatures, was carried out along the BC (90° anticlockwise rotation of the samples after each ECAP pass) route by equal… Click to show full abstract

Deformation of an as-rolled rare earth Mg-2Y-0.6Nd-0.6Zr alloy, at different temperatures, was carried out along the BC (90° anticlockwise rotation of the samples after each ECAP pass) route by equal channel angular pressing (ECAP). The effects of the deformation temperature and the predeformation on the microstructure of the magnesium alloy were determined by the microstructure examination. The slip systems and texture change of the Mg-2Y-0.6Nd-0.6Zr alloy were investigated by X-ray diffraction (XRD) and electron backscattered diffraction (EBSD), after equal channel angular deformation. The results showed that after seven passes of rolling, the grain size in the Mg-2Y-0.6Nd-0.6Zr alloy was refined to approximately 22 µm and the slip occurred mainly by a cylindrical slip and a pyramidal slip. After one pass of ECAP at 340 °C, the internal average grain size was significantly reduced to 11 µm, the cylindrical diffraction intensity clearly weakened, and the pyramidal diffraction intensity increased. EBSD pole figure analysis revealed that the base texture of the rolled Mg-2Y-0.6Nd-0.6Zr alloy weakened from 24.31 to 11.34 after ECAP. The mechanical properties indicated that the tensile strength and elongation of the rolled Mg-2Y-0.6Nd-0.6Zr alloy reached maximum values, when the deformation temperature was 340 °C.

Keywords: alloy; temperature; rare earth; 6nd 6zr; 6zr alloy; rolled rare

Journal Title: Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.