In order to effectively solve the problems of low prediction accuracy and calculation efficiency of existing methods for estimating economic loss in a subway station engineering project due to rainstorm… Click to show full abstract
In order to effectively solve the problems of low prediction accuracy and calculation efficiency of existing methods for estimating economic loss in a subway station engineering project due to rainstorm flooding, a new intelligent prediction model is developed using the sparrow search algorithm (SSA), the least-squares support vector machine (LSSVM) and the mean impact value (MIV) method. First, in this study, 11 input variables are determined from the disaster loss rate and asset value, and a complete method is provided for acquiring and processing data of all variables. Then, the SSA method, with strong optimization ability, fast convergence and few parameters, is used to optimize the kernel function and the penalty factor parameters of the LSSVM. Finally, the MIV is used to identify the important input variables, so as to reduce the predicted input variables and achieve higher calculation accuracy. In addition, 45 station projects in China were selected for empirical analysis. The empirical results revealed that the linear correlation between the 11 input variables and output variables was weak, which demonstrated the necessity of adopting nonlinear analysis methods such as the LSSVM. Compared with other forecasting methods, such as the multiple regression analysis, the backpropagation neural network (BPNN), the BPNN optimized by the particle swarm optimization, the BPNN optimized by the SSA, the LSSVM, the LSSVM optimized by the genetic algorithm, the PSO-LSSVM and the LSSVM optimized by the Grey Wolf Optimizer, the model proposed in this paper had higher accuracy and stability and was effectively used for forecasting economic loss in subway station engineering projects due to rainstorms.
               
Click one of the above tabs to view related content.