To construct a highly active g-C3N4 (CN)/silica hybrid nanosystem, the supramolecular precursor strategy of introducing melamine–cyanuric acid (MCA) by synergistically using micromolecular melamine (m) and urea (u) for CN nanostructure… Click to show full abstract
To construct a highly active g-C3N4 (CN)/silica hybrid nanosystem, the supramolecular precursor strategy of introducing melamine–cyanuric acid (MCA) by synergistically using micromolecular melamine (m) and urea (u) for CN nanostructure construction on the silica nanosheets (SiNSs) surface was researched. The results showed that the introduction of MCA supramolecular aggregates promoted the generation of ordered CN nanostructures attached to SiNSs, and the morphology of the CN nanostructure could be regulated through the m/u mass ratio. When the ratio is equal to 1/30, a typical g-C3N4/silica hybrid nanosheet (mu-CN/SiNSs-3) was successfully prepared, which showed the ultra-high photocatalytic activity for Rhodamine B dye degradation within 25 min with an apparent rate constant of 0.186 min−1, owing to the large surface area of highly dispersed and ordered CN nanosheets, a strong interaction between CN and SiNSs, high photogenerated carriers separation efficiency, and the more negative conduction band potential offering more active species of 1O2 and •O2−. Unexpectedly, the mu-CN/SiNSs-2 composite (m/u = 1/10) exhibited the highest activity for tetracycline antibiotic degradation, mainly due to the morphological advantage of a certain number of nanotubes generated on the CN/SiNSs hybrid nanosheets. It indicates that the supramolecular precursor strategy by synergistically using melamine and urea is highly efficient for the nanostructure construction of the CN/SiNSs hybrid system, enabling an appropriate nanostructure for the photodegradation of various pollutants.
               
Click one of the above tabs to view related content.