Conventional approaches to synthesize thermoplastic polyurethane (TPU) with excellent robustness are limited by a competing relationship between soft and hard segments for tuning mechanical properties in terms of chain flexibility… Click to show full abstract
Conventional approaches to synthesize thermoplastic polyurethane (TPU) with excellent robustness are limited by a competing relationship between soft and hard segments for tuning mechanical properties in terms of chain flexibility and micro-phase separation. Herein, we present a facile and effective way of simultaneously improving the tensile strength, elongation, and toughness by constructing dynamic cross-linkages from metal-ligand interaction between Zn2+ and pyridine moiety in backbone of poly(urethane urea) (PUU) derived from 2,6-diaminopyridine and poly(propylene glycol). It was found that a Zn2+/pyridine ratio of 1:4 is the most effective for improving robustness. Specifically, tensile strength, elongation, and toughness could be remarkably increased to 16.0 MPa, 1286%, and 89.3 MJ/m3 with 226%, 29%, and 185% increments compared to uncomplexed PUU, respectively. Results from UV-vis, Fourier transform infrared spectroscopy (FTIR), cyclic tensile tests, and stress relaxation reveal that metal-ligand interaction significantly interferes with the hydrogen bonding of urea groups, thus leading to weakening of stiffness. Furthermore, half of vacant ligands enable dynamic complexation during stretching, which consequently ensures constant noncovalent cross-linkages for constraining mutual chain sliding, contributing to simultaneous improvement of tensile strength, elongation, and toughness. This work provides a promising approach for designing TPU with excellent robustness.
               
Click one of the above tabs to view related content.