LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Excellent Toughening of 2,6-Diaminopyridine Derived Poly (Urethane Urea) via Dynamic Cross-Linkages and Interfering with Hydrogen Bonding of Urea Groups from Partially Coordinated Ligands

Photo from wikipedia

Conventional approaches to synthesize thermoplastic polyurethane (TPU) with excellent robustness are limited by a competing relationship between soft and hard segments for tuning mechanical properties in terms of chain flexibility… Click to show full abstract

Conventional approaches to synthesize thermoplastic polyurethane (TPU) with excellent robustness are limited by a competing relationship between soft and hard segments for tuning mechanical properties in terms of chain flexibility and micro-phase separation. Herein, we present a facile and effective way of simultaneously improving the tensile strength, elongation, and toughness by constructing dynamic cross-linkages from metal-ligand interaction between Zn2+ and pyridine moiety in backbone of poly(urethane urea) (PUU) derived from 2,6-diaminopyridine and poly(propylene glycol). It was found that a Zn2+/pyridine ratio of 1:4 is the most effective for improving robustness. Specifically, tensile strength, elongation, and toughness could be remarkably increased to 16.0 MPa, 1286%, and 89.3 MJ/m3 with 226%, 29%, and 185% increments compared to uncomplexed PUU, respectively. Results from UV-vis, Fourier transform infrared spectroscopy (FTIR), cyclic tensile tests, and stress relaxation reveal that metal-ligand interaction significantly interferes with the hydrogen bonding of urea groups, thus leading to weakening of stiffness. Furthermore, half of vacant ligands enable dynamic complexation during stretching, which consequently ensures constant noncovalent cross-linkages for constraining mutual chain sliding, contributing to simultaneous improvement of tensile strength, elongation, and toughness. This work provides a promising approach for designing TPU with excellent robustness.

Keywords: cross linkages; urethane urea; cross; dynamic cross; poly urethane; hydrogen bonding

Journal Title: Polymers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.