Fused deposition modeling (FDM) is the most economical additive manufacturing (AM) technology available for fabricating complex part geometries. However, the involvement of numerous control process parameters and dimensional instabilities are… Click to show full abstract
Fused deposition modeling (FDM) is the most economical additive manufacturing (AM) technology available for fabricating complex part geometries. However, the involvement of numerous control process parameters and dimensional instabilities are challenges of FDM. Therefore, this study investigated the effect of 3D printing parameters on dimensional deviations, including the length, width, height, and angle of polylactic acid (PLA) printed parts. The selected printing parameters include layer height, number of perimeters, infill density, infill angle, print speed, nozzle temperature, bed temperature, and print orientation. Three-level definitive screening design (DSD) was used to plan experimental runs. The results revealed that infill density is the most consequential parameter for length and width deviation, while layer height is significant for angle and height deviation. The regression models developed for the four responses are non-linear quadratic. The optimal results are obtained considering the integrated approach of desirability and weighted aggregated sum product assessment (WASPAS). The optimal results include a layer height of 0.1 mm, a total of six perimeters, an infill density of 20%, a fill angle of 90°, a print speed of 70 mm/s, a nozzle temperature of 220 °C, a bed temperature of 70 °C, and a print orientation of 90°. The current study provides a guideline to fabricate assistive devices, such as hand and foot orthoses, that require high dimensional accuracies.
               
Click one of the above tabs to view related content.