LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application

Soil is a composite material of great interest to civil engineers. When the quality of such composite soils is poor, ground improvement techniques must be adopted to withstand the design… Click to show full abstract

Soil is a composite material of great interest to civil engineers. When the quality of such composite soils is poor, ground improvement techniques must be adopted to withstand the design load of superstructure. Existing soil stabilizers include lime and cement; however, their environmental safety and sustainable use during stabilization have been receiving increasing attention in recent years. This study investigated the use of granite sand (GS) and calcium lignosulphonate (CLS) as sustainable stabilizers that could be blended with clayey soils. The considered dosages of GS were 30%, 40% and 50%, and those of the CLS were 0.25%, 0.5%, 1% and 1.5%. Direct shear and consolidation tests were performed on the GS–CLS blended soil samples that were cured for 7 and 14 days. The amended stabilizers improved the shear parameters and consolidation characteristics at an optimum dosage of 30% GS and 0.5% CLS. Maximum improvements of 84% and 163% were observed in the cohesion and angles of internal friction, respectively. A significant change was also observed in the consolidation characteristics, making them practically applicable. The soil hydraulic conductivity was reduced by 14%, and the coefficient of consolidation increased by 203% for 30% GS and 05% CLS. Carbon footprint analyses were performed on the soil composition that would be best-suited for a typical homogenous earthen dam section. The results showed that the use of GS and CLS together reduced the carbon emissions by 6.57 and 7.7 times, compared to traditional stabilizers, such as cement and lime.

Keywords: cls; granite sand; consolidation; calcium lignosulphonate; consolidation characteristics; soil

Journal Title: Sustainability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.