LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adipose-derived stem cells show hepatic differentiation potential and therapeutic effect in rats with acute liver failure

Photo from wikipedia

Hepatocyte transplantation contributes to the repair of liver damage, but hepatocyte resources are limited, making it difficult for this to become a routine treatment. Previous studies have confirmed that mesenchymal… Click to show full abstract

Hepatocyte transplantation contributes to the repair of liver damage, but hepatocyte resources are limited, making it difficult for this to become a routine treatment. Previous studies have confirmed that mesenchymal stem cells (MSCs) can be induced to differentiate into hepatocyte-like cells (HLCs) by adding different cytokine combinations in vitro, and they then play some roles of hepatocytes. Our previous studies found that the differentiation ability of stem cells is closely related to the origin of the tissue. To identify the mesenchymal stem cells that are most suitable for hepatic differentiation and the treatment of liver failure, we use a three-phase induction process in which human adipose-derived stem cells (hADSCs) and umbilical cord mesenchymal stem cells (hUCMSCs) are induced to differentiate towards HLCs in vitro, and rats with acute liver failure (ALF) induced by D-gal are cured by MSCs and MSC-derived HLCs (MSCs-HLC), respectively. We find that hADSCs are stronger than hUCMSCs in hepatic differentiation ability, and they have a better curative effect when using hADSCs-HLC or jointly using hADSCs and hADSCs-HLC, which has positive significance for hepatocyte regeneration, recovery of liver function and reduction of systemic inflammatory reaction, finally improving the survival rate of rats with acute liver failure.

Keywords: stem; stem cells; liver failure; hepatic differentiation

Journal Title: Acta Biochimica et Biophysica Sinica
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.