LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantifying the Association Between Psychotherapy Content and Clinical Outcomes Using Deep Learning.

Photo from wikipedia

Importance Compared with the treatment of physical conditions, the quality of care of mental health disorders remains poor and the rate of improvement in treatment is slow, a primary reason… Click to show full abstract

Importance Compared with the treatment of physical conditions, the quality of care of mental health disorders remains poor and the rate of improvement in treatment is slow, a primary reason being the lack of objective and systematic methods for measuring the delivery of psychotherapy. Objective To use a deep learning model applied to a large-scale clinical data set of cognitive behavioral therapy (CBT) session transcripts to generate a quantifiable measure of treatment delivered and to determine the association between the quantity of each aspect of therapy delivered and clinical outcomes. Design, Setting, and Participants All data were obtained from patients receiving internet-enabled CBT for the treatment of a mental health disorder between June 2012 and March 2018 in England. Cognitive behavioral therapy was delivered in a secure online therapy room via instant synchronous messaging. The initial sample comprised a total of 17 572 patients (90 934 therapy session transcripts). Patients self-referred or were referred by a primary health care worker directly to the service. Exposures All patients received National Institute for Heath and Care Excellence-approved disorder-specific CBT treatment protocols delivered by a qualified CBT therapist. Main Outcomes and Measures Clinical outcomes were measured in terms of reliable improvement in patient symptoms and treatment engagement. Reliable improvement was calculated based on 2 severity measures: Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder 7-item scale (GAD-7), corresponding to depressive and anxiety symptoms respectively, completed by the patient at initial assessment and before every therapy session (see eMethods in the Supplement for details). Results Treatment sessions from a total of 14 899 patients (10 882 women) aged between 18 and 94 years (median age, 34.8 years) were included in the final analysis. We trained a deep learning model to automatically categorize therapist utterances into 1 or more of 24 feature categories. The trained model was applied to our data set to obtain quantifiable measures of each feature of treatment delivered. A logistic regression revealed that increased quantities of a number of session features, including change methods (cognitive and behavioral techniques used in CBT), were associated with greater odds of reliable improvement in patient symptoms (odds ratio, 1.11; 95% CI, 1.06-1.17) and patient engagement (odds ratio, 1.20, 95% CI = 1.12-1.27). The quantity of nontherapy-related content was associated with reduced odds of symptom improvement (odds ratio, 0.89; 95% CI, 0.85-0.92) and patient engagement (odds ratio, 0.88, 95% CI, 0.84-0.92). Conclusions and Relevance This work demonstrates an association between clinical outcomes in psychotherapy and the content of therapist utterances. These findings support the principle that CBT change methods help produce improvements in patients' presenting symptoms. The application of deep learning to large clinical data sets can provide valuable insights into psychotherapy, informing the development of new treatments and helping standardize clinical practice.

Keywords: improvement; clinical outcomes; cbt; treatment; deep learning; therapy

Journal Title: JAMA psychiatry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.