LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Validation of a Multivariable Prediction Model for Postoperative Intensive Care Unit Stay in a Broad Surgical Population.

Photo by thinkmagically from unsplash

Importance Despite limited capacity and expensive cost, there are minimal objective data to guide postoperative allocation of intensive care unit (ICU) beds. The Surgical Risk Preoperative Assessment System (SURPAS) uses… Click to show full abstract

Importance Despite limited capacity and expensive cost, there are minimal objective data to guide postoperative allocation of intensive care unit (ICU) beds. The Surgical Risk Preoperative Assessment System (SURPAS) uses 8 preoperative variables to predict many common postoperative complications, but it has not yet been evaluated in predicting postoperative ICU admission. Objective To determine if the SURPAS model could accurately predict postoperative ICU admission in a broad surgical population. Design, Setting, and Participants This decision analytical model was a retrospective, observational analysis of prospectively collected patient data from the 2012 to 2018 American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) database, which were merged with individual patients' electronic health record data to capture postoperative ICU use. Multivariable logistic regression modeling was used to determine how the 8 preoperative variables of the SURPAS model predicted ICU use compared with a model inputting all 28 preoperatively available NSQIP variables. Data included in the analysis were collected for the ACS NSQIP at 5 hospitals (1 tertiary academic center, 4 academic affiliated hospitals) within the University of Colorado Health System between January 1, 2012, and December 31, 2018. Included patients were those undergoing surgery in 9 surgical specialties during the 2012 to 2018 period. Data were analyzed from May 29 to July 30, 2021. Exposure Surgery in 9 surgical specialties, including general, gynecology, orthopedic, otolaryngology, plastic, thoracic, urology, vascular, and neurosurgery. Main Outcomes and Measures Use of ICU care up to 30 days after surgery. Results A total of 34 568 patients were included in the analytical data set: 32 032 (92.7%) in the cohort without postoperative ICU use and 2545 (7.4%) in the cohort with postoperative ICU use (no ICU use: mean [SD] age, 54.9 [16.6] years; 18 188 women [56.8%]; ICU use: mean [SD] age, 60.3 [15.3] years; 1333 men [52.4%]). For the internal chronologic validation of the 7-variable SURPAS model, data from 2012 to 2016 were used as the training data set (n = 24 250, 70.2% of the total sample size of 34 568) and data from 2017 to 2018 were used as the test data set (n = 10 318, 29.8% of the total sample size of 34 568). The C statistic improved in the test data set compared with the training data set (0.933; 95% CI, 0.924-0.941 vs 0.922; 95% CI, 0.917-0.928), whereas the Brier score was slightly worse in the test data set compared with the training data set (0.045; 95% CI, 0.042-0.048 vs 0.045; 95% CI, 0.043-0.047). The SURPAS model compared favorably with the model inputting all 28 NSQIP variables, with both having good calibration between observed and expected outcomes in the Hosmer-Lemeshow graphs and similar Brier scores (model inputting all variables, 0.044; 95% CI, 0.043-0.048; SURPAS model, 0.045; 95% CI, 0.042-0.046) and C statistics (model inputting all variables, 0.929; 95% CI, 0.925-0.934; SURPAS model, 0.925; 95% CI, 0.921-0.930). Conclusions and Relevance Results of this decision analytical model study revealed that the SURPAS prediction model accurately predicted postoperative ICU use across a diverse surgical population. These results suggest that the SURPAS prediction model can be used to help with preoperative planning and resource allocation of limited ICU beds.

Keywords: icu; postoperative icu; model; icu use; data set

Journal Title: JAMA surgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.