LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ca2+ functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin

Photo by npi from unsplash

Pyridoxal 5′‐phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ‐aminobutyric acid levels in the brain, yet how PDXP is regulated… Click to show full abstract

Pyridoxal 5′‐phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ‐aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca2+‐ and integrin‐binding protein 1 (CIB1) as a PDXP interactor by yeast two‐hybrid screening and find a calmodulin (CaM)‐binding motif that overlaps with the PDXP‐CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca2+ concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP‐CIB1 complex may functionally differ from the PDXP‐Ca2+‐CaM complex.

Keywords: phosphatase; mutually exclusive; pdxp; pyridoxal phosphatase; cib1

Journal Title: FEBS Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.