LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamics and electrostatics define an allosteric druggable site within the receptor‐binding domain of SARS‐CoV‐2 spike protein

Photo by bermixstudio from unsplash

The pathogenesis of the SARS‐CoV‐2 virus initiates through recognition of the angiotensin‐converting enzyme 2 (ACE2) receptor of the host cells by the receptor‐binding domain (RBD) located at the spikes of… Click to show full abstract

The pathogenesis of the SARS‐CoV‐2 virus initiates through recognition of the angiotensin‐converting enzyme 2 (ACE2) receptor of the host cells by the receptor‐binding domain (RBD) located at the spikes of the virus. Here, using molecular dynamics simulations, we have demonstrated the allosteric crosstalk within the RBD in the apo‐ and the ACE2 receptor‐bound states, revealing the contribution of the dynamics‐based correlated motions and the electrostatic energy perturbations to this crosstalk. While allostery, based on correlated motions, dominates inherent distal communication in the apo‐RBD, the electrostatic energy perturbations determine favorable pairwise crosstalk within the RBD residues upon binding to ACE2. Interestingly, the allosteric path is composed of residues which are evolutionarily conserved within closely related coronaviruses, pointing toward the biological relevance of the communication and its potential as a target for drug development.

Keywords: binding domain; electrostatics; receptor; sars cov; receptor binding

Journal Title: Febs Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.