LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biochemical, structural, and functional studies reveal that MAB_4324c from Mycobacterium abscessus is an active tandem repeat N-acetyltransferase.

Photo by cdc from unsplash

Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug-resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence. Mining the M. abscessus genome has… Click to show full abstract

Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug-resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence. Mining the M. abscessus genome has revealed genes encoding additional N-acetyltransferases whose functions remain uncharacterized, among them MAB_4324c. Here, we showed that the purified MAB_4324c protein is a N-acetyltransferase able to acetylate small polyamine substrates. The crystal structure of MAB_4324c was solved at high resolution in complex with its cofactor, revealing the presence of two GCN5-related N-acetyltransferase domains and a cryptic binding site for NADPH. Genetic studies demonstrate that MAB_4324c is not essential for in vitro growth of M. abscessus, however overexpression of the protein enhanced the uptake and survival of M. abscessus in THP-1 macrophages.

Keywords: mab 4324c; mycobacterium abscessus; abscessus; biochemical structural; structural functional

Journal Title: FEBS letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.