LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The potassium channel GhAKT2bD is regulated by CBL–CIPK calcium signalling complexes and facilitates K+ allocation in cotton

Photo by itfeelslikefilm from unsplash

Efficient allocation of the essential nutrient potassium (K+) is a central determinant of plant ion homeostasis and involves AKT2 K+ channels. Here, we characterize four AKT2 K+ channels from cotton… Click to show full abstract

Efficient allocation of the essential nutrient potassium (K+) is a central determinant of plant ion homeostasis and involves AKT2 K+ channels. Here, we characterize four AKT2 K+ channels from cotton and report that xylem and phloem expressed GhAKT2bD facilitates K+ allocation and that AKT2‐silencing impairs plant growth and development. We uncover kinase activity‐dependent activation of GhAKT2bD‐mediated K+ uptake by AtCBL4–GhCIPK1 calcium signalling complexes in HEK293T cells. Moreover, AtCBL4–AtCIPK6 complexes known to convey activation of AtAKT2 in Arabidopsis also activate cotton GhAKT2bD in HEK293T cells. Collectively, these findings reveal an essential role for AKT2 in the source‐sink allocation of K+ in cotton and identify GhAKT2bD as subject to complex regulation by CBL–CIPK Ca2+ sensor–kinase complexes.

Keywords: facilitates allocation; ghakt2bd; allocation cotton; cotton; calcium signalling; signalling complexes

Journal Title: FEBS Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.