Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that… Click to show full abstract
Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that control retro-translocation of terminally misfolded proteins across the ER membrane for clearance by the cytoplasmic ubiquitin/proteasome system. In this review, we catalogue folding-defective mammalian, yeast, and plant proteins that fail to engage ERAD machineries. We describe that they rather segregate in ER subdomains that eventually vesiculate. These ER-derived vesicles are captured by double membrane autophagosomes, engulfed by endolysosomes/vacuoles, or fuse with degradative organelles to clear cells from their toxic cargo. These client-specific, mechanistically diverse ER-phagy pathways are grouped under the umbrella term of ER-to-Lysosome-Associated Degradation (ERLAD) for description in this essay.
               
Click one of the above tabs to view related content.