LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ER-to-Lysosome Associated Degradation (ERLAD) in a Nutshell: mammalian, yeast and plant ER-phagy as induced by misfolded proteins.

Photo from wikipedia

Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that… Click to show full abstract

Conserved catabolic pathways operate to remove aberrant polypeptides from the endoplasmic reticulum (ER), the major biosynthetic organelle of eukaryotic cells. The best known are the ER-associated degradation (ERAD) pathways that control retro-translocation of terminally misfolded proteins across the ER membrane for clearance by the cytoplasmic ubiquitin/proteasome system. In this review, we catalogue folding-defective mammalian, yeast, and plant proteins that fail to engage ERAD machineries. We describe that they rather segregate in ER subdomains that eventually vesiculate. These ER-derived vesicles are captured by double membrane autophagosomes, engulfed by endolysosomes/vacuoles, or fuse with degradative organelles to clear cells from their toxic cargo. These client-specific, mechanistically diverse ER-phagy pathways are grouped under the umbrella term of ER-to-Lysosome-Associated Degradation (ERLAD) for description in this essay.

Keywords: lysosome associated; associated degradation; mammalian yeast; misfolded proteins; yeast plant; degradation

Journal Title: FEBS letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.