Transforming growth factor‐beta (TGF‐β) functions as a potent proliferation inhibitor and apoptosis inducer in the early stages of breast cancer, yet promotes cancer aggressiveness in the advanced stages. The dual… Click to show full abstract
Transforming growth factor‐beta (TGF‐β) functions as a potent proliferation inhibitor and apoptosis inducer in the early stages of breast cancer, yet promotes cancer aggressiveness in the advanced stages. The dual effect of TGF‐β on cancer development is known as TGF‐β paradox, and the remarkable functional conversion of TGF‐β is a pivotal and controversial phenomenon that has been widely investigated for decades. This phenomenon may be attributed to the cross talk between TGF‐β signaling and other pathways, including EGF receptor (EGFR) signaling during cancer progression. However, the underlying mechanism by which TGF‐β shifts its role from a tumor suppressor to a cancer promoter remains elusive. In this study, TGF‐β is positively correlated with EGFR expression in breast cancer tissues, and a functional linkage is observed between TGF‐β signaling and EGFR transactivation in breast cancer cell lines. TGF‐β promotes the migration and invasion abilities of breast cancer cells, along with the increase in EGFR expression. EGFR is also essential for TGF‐β‐induced enhancement of these abilities of breast cancer cells. Canonical Smad3 signaling and ERK/Sp1 signaling pathways mediate TGF‐β‐induced EGFR upregulation. Hence, our study provided insights into a novel mechanism by which TGF‐β supports breast cancer progression.
               
Click one of the above tabs to view related content.