LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways

Photo by 20164rhodi from unsplash

Hepatocellular carcinoma (HCC), with its ineffective therapeutic options and poor prognosis, represents a global threat. In the present study, we show that RAD52 motif 1 (RDM1), a key regulator of… Click to show full abstract

Hepatocellular carcinoma (HCC), with its ineffective therapeutic options and poor prognosis, represents a global threat. In the present study, we show that RAD52 motif 1 (RDM1), a key regulator of DNA double‐strand break repair and recombination, is downregulated in HCC tissues and suppresses tumor growth. In clinical HCC samples, low expression of RDM1 correlates with larger tumor size, poor tumor differentiation, and unfavorable survival. In vitro and in vivo data demonstrate that knockdown of RDM1 increases HCC cell proliferation, colony formation, and cell population at G2/M phase, whereas RDM1 overexpression results in the opposite phenotypes. Mechanistically, RDM1 binds to the tumor suppressor p53 and enhances its protein stability. In the presence of p53, RDM1 suppresses the phosphorylation of Raf and ERK. Overexpression of p53 or treatment with ERK inhibitor significantly abolishes cell proliferation induced by the depletion of RDM1. In addition, overexpression of methyltransferase‐like 3 markedly induces N6‐methyladenosine modification of RDM1 mRNA and represses its expression. Taken together, our study indicates that RDM1 functions as a tumor suppressor and may be a potential prognostic and therapeutic factor for HCC.

Keywords: hepatocellular carcinoma; loss rdm1; rdm1; p53; raf erk

Journal Title: Molecular Oncology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.