LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of phenotype‐specific therapeutic vulnerabilities in breast cells using a CRISPR loss‐of‐function screen

Photo from wikipedia

Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple‐negative breast… Click to show full abstract

Cellular phenotype plasticity between the epithelial and mesenchymal states has been linked to metastasis and heterogeneous responses to cancer therapy, and remains a challenge for the treatment of triple‐negative breast cancer (TNBC). Here, we used isogenic human breast epithelial cell lines, D492 and D492M, representing the epithelial and mesenchymal phenotypes, respectively. We employed a CRISPR‐Cas9 loss‐of‐function screen targeting a 2240‐gene ‘druggable genome’ to identify phenotype‐specific vulnerabilities. Cells with the epithelial phenotype were more vulnerable to the loss of genes related to EGFR‐RAS‐MAPK signaling, while the mesenchymal‐like cells had increased sensitivity to knockout of G2‐M cell cycle regulators. Furthermore, we discovered knockouts that sensitize to the mTOR inhibitor everolimus and the chemotherapeutic drug fluorouracil in a phenotype‐specific manner. Specifically, loss of EGFR and fatty acid synthase (FASN) increased the effectiveness of the drugs in the epithelial and mesenchymal phenotypes, respectively. These phenotype‐associated genetic vulnerabilities were confirmed using targeted inhibitors of EGFR (gefitinib), G2‐M transition (STLC), and FASN (Fasnall). In conclusion, a CRISPR‐Cas9 loss‐of‐function screen enables the identification of phenotype‐specific genetic vulnerabilities that can pinpoint actionable targets and promising therapeutic combinations.

Keywords: phenotype; loss function; function screen; phenotype specific; loss

Journal Title: Molecular Oncology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.