Small‐cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show… Click to show full abstract
Small‐cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show that the expression of the slit guidance ligand 2 (SLIT2) tumor suppressor gene is reduced in SCLC tumors relative to adjacent normal tissue. In addition, the expression of the SLIT2 receptor, roundabout guidance receptor 1 (ROBO1), is upregulated. We find a positive association between SLIT2 expression and the Yes1 associated transcriptional regulator (YAP1)‐expressing SCLC subtype (SCLC‐Y), which shows a better prognosis. Using genetically engineered SCLC cells, adenovirus gene therapy, and preclinical xenograft models, we show that SLIT2 overexpression or the deletion of ROBO1 restricts tumor growth in vitro and in vivo. Mechanistic studies revealed significant inhibition of myeloid‐derived suppressor cells (MDSCs) and M2‐like tumor‐associated macrophages (TAMs) in the SCLC tumors. In addition, SLIT2 enhances M1‐like and phagocytic macrophages. Molecular analysis showed that ROBO1 knockout or SLIT2 overexpression suppresses the transforming growth factor beta 1 (TGF‐β1)/β‐catenin signaling pathway in both tumor cells and macrophages. Overall, we find that SLIT2 and ROBO1 have contrasting effects on SCLC tumors. SLIT2 suppresses, whereas ROBO1 promotes, SCLC growth by regulating the Tgf‐β1/glycogen synthase kinase‐3 beta (GSK3)/β‐catenin signaling pathway in tumor cells and TAMs. These studies indicate that SLIT2 could be used as a novel therapeutic agent against aggressive SCLC.
               
Click one of the above tabs to view related content.