The recent multiyear drought over California was characterized by large precipitation deficits and abnormally high temperatures during both wet and dry seasons. This study investigates and quantifies the contributions of… Click to show full abstract
The recent multiyear drought over California was characterized by large precipitation deficits and abnormally high temperatures during both wet and dry seasons. This study investigates and quantifies the contributions of precipitation and temperature anomalies to the development of the multiyear drought with a set of modeling experiments where the anomalies are either removed or randomly replaced with other historical observations. The study reveals that precipitation deficits have been largely responsible for producing the extreme agricultural drought (i.e., large soil moisture deficits) while warmer temperatures have only marginally intensified the drought. However, the warmer temperatures over the high-elevation areas during the wet season have contributed equally or more than the precipitation deficits to the reduction of snowpack. The interplay between temperature and precipitation anomalies in space and time also appears to be important for the drought development.
               
Click one of the above tabs to view related content.