LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of internal solitary waves over a large sill: From Knight Inlet to Luzon Strait

Photo by rudi0307 from unsplash

A fully nonlinear, nonhydrostatic numerical model is utilized to investigate the generation of Internal Solitary Waves (ISWs) upstream of the Knight Inlet sill. While an upstream hydraulic jump initiates the… Click to show full abstract

A fully nonlinear, nonhydrostatic numerical model is utilized to investigate the generation of Internal Solitary Waves (ISWs) upstream of the Knight Inlet sill. While an upstream hydraulic jump initiates the ISW generation and both hydraulic jump and upstream influence contribute to the generation, it is found that upstream influence is dominant and the hydraulic jump is not necessary for the ultimate generation of ISWs. Decreasing the tidal forcing or upstream sill width may render the flow subcritical (i.e., the hydraulic jump disappears) and ISWs can be generated by nonlinear steepening of long wave disturbances induced by upstream influence. Increasing the tidal forcing or upstream sill width may generate a hydraulic jump blocking strong upstream propagating disturbances. The jump subsequently becomes a turbulent bore and later disperses into a train of ISWs as the tide relaxes. Further increase in the tidal forcing may sweep the turbulent bore downstream and a train of ISWs is emitted upstream toward the end of waning tide. By reducing the stratification strength by 1 order of magnitude, the near-sill flow is in the transcritical regime and ISWs are resonantly generated over the lee side slope. Connections to the internal tide release mechanism at Luzon Strait and to the unsteady lee wave model are also discussed. The present work provides some more insights into the ISW generation process at Knight Inlet and the connection between the generation mechanism at Knight Inlet and that at Luzon Strait is identified.

Keywords: generation; knight inlet; luzon strait; hydraulic jump

Journal Title: Journal of Geophysical Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.