LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP‐1)

Photo from wikipedia

The Alpine Fault, a transpressional plate boundary between the Australian and Pacific plates, is known to rupture quasi-periodically with large magnitude earthquakes (Mw ~8). The hydraulic and elastic properties of… Click to show full abstract

The Alpine Fault, a transpressional plate boundary between the Australian and Pacific plates, is known to rupture quasi-periodically with large magnitude earthquakes (Mw ~8). The hydraulic and elastic properties of fault zones are thought to vary over the seismic cycle, influencing the nature and style of earthquake rupture and associated processes. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements performed on fault lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1), which sampled principal slip zone (PSZ) gouges, cataclasites and fractured ultramylonites, with all recovered lithologies overprinted by abundant secondary mineralization, recording enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down-core axis and, when present, foliation. Measurements were conducted with pore pressure (H2O) held at 5 MPa over an effective pressure (Peff) range of 5 - 105 MPa. Permeabilities and seismic velocities decrease with proximity to the PSZ with permeabilities ranging from 10-17 to 10-21 m2 and Vp and Vs ranging from 4400 - 5900 m/s in the ultramylonites/cataclasites and 3900 - 4200 m/s at the PSZ. In comparison with intact country rock protoliths, the highly variable cataclastic structures and secondary phyllosilicates and carbonates have resulted in an overall reduction in permeability and seismic wave velocity, as well as a reduction in anisotropy within the fault core. These results concur with other similar studies on other mature, tectonic faults in their interseismic period.

Keywords: fault; deep fault; velocity; permeability; fault drilling; alpine fault

Journal Title: Journal of Geophysical Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.