LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of ocean‐atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system

Photo by averey from unsplash

For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local… Click to show full abstract

For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.

Keywords: assimilation; sst; assimilation system; data assimilation; coupled data

Journal Title: Journal of Geophysical Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.