LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Moored observations of the Deep Western Boundary Current in the NW Atlantic: 2004-2014

Photo from wikipedia

A moored array spanning the continental slope southeast of Cape Cod sampled the equatorward-flowing Deep Western Boundary Current (DWBC) for a 10-year period: May 2004 - May 2014. Daily profiles… Click to show full abstract

A moored array spanning the continental slope southeast of Cape Cod sampled the equatorward-flowing Deep Western Boundary Current (DWBC) for a 10-year period: May 2004 - May 2014. Daily profiles of subinertial velocity, temperature, salinity and neutral density are constructed for each mooring site and cross-line DWBC transport time series are derived for specified water mass layers. Time-averaged transports based on daily estimates of the flow and density fields in stream coordinates are contrasted with those derived from the Eulerian-mean flow field, modes of DWBC transport variability are investigated through compositing, and comparisons are made to transport estimates for other latitudes. Integrating the daily velocity estimates over the neutral density range of 27.8 - 28.125 kg/m3 (encompassing Labrador Sea and Overflow Water layers), a mean equatorward DWBC transport of 22.8 x 106 m3/s ± 1.9 x 106 m3/s is obtained. Notably, a statistically-significant trend of decreasing equatorward transport is observed in several of the DWBC components as well as the current as a whole. The largest linear change (a 4% decrease per year) is seen in the layer of Labrador Sea Water that was renewed by deep convection in the early 1990s whose transport fell from 9.0 x 106 m3/s at the beginning of the field program to 5.8 x 106 m3/s at its end. The corresponding linear fit to the combined Labrador Sea and Overflow Water DWBC transport decreases from 26.4 x 106 m3/s to 19.1 x 106 m3/s. In contrast, no long-term trend is observed in upper-ocean Slope Water transport. These trends are discussed in the context of decadal observations of the North Atlantic circulation, and subpolar air-sea interaction/water mass transformation.

Keywords: boundary current; water; deep western; transport; dwbc transport; western boundary

Journal Title: Journal of Geophysical Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.