LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

Photo from wikipedia

Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry… Click to show full abstract

Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical byproducts, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth, and use models developed from existing studies to predict the corresponding ejecta properties. Using multi-phase flow methods and finite rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use DSMC to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1D atmospheric turbulent diffusion to find the time-accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least 1 impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, LHB impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

Keywords: heavy bombardment; production; late heavy; impact ejecta

Journal Title: Journal of Geophysical Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.