LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toc75‐V/OEP80 is processed during translocation into chloroplasts, and the membrane‐embedded form exposes its POTRA domain to the intermembrane space

Photo from wikipedia

The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for… Click to show full abstract

The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for insertion of β‐barrel‐type proteins into the outer membrane of chloroplasts remain unknown. The same holds true for the signals required for the insertion of β‐barrel‐type proteins. At present, only the processing of Toc75‐III, the β‐barrel‐type protein of the central chloroplast translocon with an atypical signal, has been explored in detail. However, it has been debated whether Toc75‐V/ outer envelope protein 80 (OEP80), a second protein of the same family, contains a signal and undergoes processing. To substantiate the hypothesis that Toc75‐V/OEP80 is processed as well, we reinvestigated the processing in a protoplast‐based assay as well as in native membranes. Our results confirm the existence of a cleavable segment. By protease protection and pegylation, we observed intermembrane space localization of the soluble N‐terminal domain. Thus, Toc75‐V contains a cleavable N‐terminal signal and exposes its polypeptide transport‐associated domains to the intermembrane space of plastids, where it likely interacts with its substrates.

Keywords: toc75 oep80; oep80 processed; intermembrane space; toc75

Journal Title: FEBS Open Bio
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.