LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitric oxide inhibits endothelial cell apoptosis by inhibiting cysteine‐dependent SOD1 monomerization

Photo by nci from unsplash

Endothelial cell apoptosis is an important pathophysiology in many cardiovascular diseases. The gasotransmitter nitric oxide (NO) is known to regulate cell survival and apoptosis. However, the mechanism underlying the effect… Click to show full abstract

Endothelial cell apoptosis is an important pathophysiology in many cardiovascular diseases. The gasotransmitter nitric oxide (NO) is known to regulate cell survival and apoptosis. However, the mechanism underlying the effect of NO remains unclear. In this research, by targeting cytosolic copper/zinc superoxide dismutase (SOD1) monomerization, we aimed to explore how NO inhibited endothelial cell apoptosis. We showed that treatment with the NO synthase (NOS) inhibitor nomega‐nitro‐l‐arginine methyl ester hydrochloride (L‐NAME) significantly decreased the endogenous NO content of endothelial cells, facilitated the formation of SOD1 monomers, inhibited dismutase activity, and promoted reactive oxygen species (ROS) accumulation in human umbilical vein endothelial cells (HUVECs); by contrast, supplementation with the NO donor sodium nitroprusside (SNP) upregulated NO content, prevented the formation of SOD1 monomers, enhanced dismutase activity, and reduced ROS accumulation in L‐NAME‐treated HUVECs. Mechanistically, tris(2‐carboxyethyl) phosphine hydrochloride (TCEP), a specific reducer of cysteine thiol, increased SOD1 monomer formation, thus preventing the NO‐induced increase in dismutase activity and the decrease in ROS. Furthermore, SNP inhibited HUVEC apoptosis caused by the decrease in endogenous NO, whereas TCEP abolished this protective effect of SNP. In summary, our data reveal that NO protects endothelial cells against apoptosis by inhibiting cysteine‐dependent SOD1 monomerization to enhance SOD1 activity and inhibit oxidative stress.

Keywords: apoptosis; cell apoptosis; sod1 monomerization; endothelial cell; sod1

Journal Title: FEBS Open Bio
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.