LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Domain Wall Motion in Magnetic Nanostrips

Photo from academic.microsoft.com

Domain walls are the transition regions between two magnetic domains. These objects have been very relevant during the last decade, not only due to their intrinsic interest in the development… Click to show full abstract

Domain walls are the transition regions between two magnetic domains. These objects have been very relevant during the last decade, not only due to their intrinsic interest in the development of novel spintronics devices but also because of their fundamental interest. The study of domain wall has been linked to the research on novel spin-orbit coupling phenomena such as the Dzyaloshinskii-Moriya interaction and the spin Hall effect amount others. Domain walls can be nucleated in ferromagnetic nanostrips and can be driven by conventional magnetic fields and spin currents due to the injection of electrical pulses, which make them very promising for technological applications of recording and logic devices. In this review, based on full micromagnetic simulations supported by extended one-dimensional models, we describe the static and dynamic properties of domain walls in thin ferromagnetic and ferrimagnetic wires with perpendicular magnetic anisotropy. The present chapter aims to provide a fundamental theoretical description of the fundaments of domain walls, and the numerical tools and models which allow describing the DW dynamics in previous and future experimental setups.

Keywords: wall motion; magnetic nanostrips; motion magnetic; domain wall; domain walls

Journal Title: Materials Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.