LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cleaning the dose falloff in lung SBRT plan.

Photo by javardh from unsplash

PURPOSE To investigate a planning technique that can possibly reduce low-to-intermediate dose spillage (measured by R50%, D2cm values) in lung SBRT plans. MATERIALS AND METHODS Dose falloff outside the target… Click to show full abstract

PURPOSE To investigate a planning technique that can possibly reduce low-to-intermediate dose spillage (measured by R50%, D2cm values) in lung SBRT plans. MATERIALS AND METHODS Dose falloff outside the target was studied retrospectively in 102 SBRT VMAT plans of lung tumor. Plans having R50% and/or D2cm higher than recommended tolerances in RTOG protocols 0813 and 0915 were replanned with new optimization constraints using novel shell structures and novel constraints. Violations in the RTOG R50% value can be rectified with a dose constraint to a novel shell structure ("OptiForR50"). The construction of structure OptiForR50% and the novel optimization criteria translate the RTOG goals for R50% into direct inputs for the optimizer. Violations in the D2cm can be rectified using constraints on a 0.5 cm thick shell structure with inner surface 2cm from the PTV surface. Wilcoxon signed-rank test was used to compare differences in dose conformity, volume of hot spots, R50%, D2cm of the target in addition to the OAR doses. A two-sided P-value of 0.05 was used to assess statistical significance. RESULTS Among 102 lung SBRT plans with PTV sizes ranging from 5 to 179 cc, 32 plans with violations in R50% or D2cm were reoptimized. The mean reduction in R50% (4.68 vs 3.89) and D2cm (56.49 vs 52.51) was statistically significant both having P < 0.01. Target conformity index, volume of 105% isodose contour outside PTV, normal lung V20, and mean dose to heart and aorta were significantly lowered with P < 0.05. CONCLUSION The novel planning methodology using multiple shells including the novel OptiForR50 shell with precisely calculated dimensions and optimizer constraints lead to significantly lower values of R50% and D2cm and lower dose spillage in lung SBRT plans. All plans were successfully brought into the zone of no RTOG violations.

Keywords: dose falloff; shell; lung sbrt; r50 d2cm

Journal Title: Journal of applied clinical medical physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.