LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A practical method to quantify knowledge‐based DVH prediction accuracy and uncertainty with reference cohorts

Photo by markusspiske from unsplash

Abstract The adoption of knowledge‐based dose‐volume histogram (DVH) prediction models for assessing organ‐at‐risk (OAR) sparing in radiotherapy necessitates quantification of prediction accuracy and uncertainty. Moreover, DVH prediction error bands should… Click to show full abstract

Abstract The adoption of knowledge‐based dose‐volume histogram (DVH) prediction models for assessing organ‐at‐risk (OAR) sparing in radiotherapy necessitates quantification of prediction accuracy and uncertainty. Moreover, DVH prediction error bands should be readily interpretable as confidence intervals in which to find a percentage of clinically acceptable DVHs. In the event such DVH error bands are not available, we present an independent error quantification methodology using a local reference cohort of high‐quality treatment plans, and apply it to two DVH prediction models, ORBIT‐RT and RapidPlan, trained on the same set of 90 volumetric modulated arc therapy (VMAT) plans. Organ‐at‐risk DVH predictions from each model were then generated for a separate set of 45 prostate VMAT plans. Dose‐volume histogram predictions were then compared to their analogous clinical DVHs to define prediction errors Vclin,i‐Vpred,i (ith plan), from which prediction bias μ, prediction error variation σ, and root‐mean‐square error RMSEpred≡1N∑iVclin,i‐Vpred,i2≅σ2+μ2 could be calculated for the cohort. The empirical RMSEpred was then contrasted to the model‐provided DVH error estimates. For all prostate OARs, above 50% Rx dose, ORBIT‐RT μ and σ were comparable to or less than those of RapidPlan. Above 80% Rx dose, μ < 1% and σ < 3‐4% for both models. As a result, above 50% Rx dose, ORBIT‐RT RMSEpred was below that of RapidPlan, indicating slightly improved accuracy in this cohort. Because μ ≈ 0, RMSEpred is readily interpretable as a canonical standard deviation σ, whose error band is expected to correctly predict 68% of normally distributed clinical DVHs. By contrast, RapidPlan's provided error band, although described in literature as a standard deviation range, was slightly less predictive than RMSEpred (55–70% success), while the provided ORBIT‐RT error band was confirmed to resemble an interquartile range (40–65% success) as described. Clinicians can apply this methodology using their own institutions’ reference cohorts to (a) independently assess a knowledge‐based model's predictive accuracy of local treatment plans, and (b) interpret from any error band whether further OAR dose sparing is likely attainable.

Keywords: methodology; error; accuracy; dvh prediction; prediction

Journal Title: Journal of Applied Clinical Medical Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.