LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clinical assessment of geometric distortion for a 0.35T MR‐guided radiotherapy system

Photo by viniciusamano from unsplash

Abstract Purpose To estimate the overall spatial distortion on clinical patient images for a 0.35 T MR‐guided radiotherapy system. Methods Ten patients with head‐and‐neck cancer underwent CT and MR simulations… Click to show full abstract

Abstract Purpose To estimate the overall spatial distortion on clinical patient images for a 0.35 T MR‐guided radiotherapy system. Methods Ten patients with head‐and‐neck cancer underwent CT and MR simulations with identical immobilization. The MR images underwent the standard systematic distortion correction post‐processing. The images were rigidly registered and landmark‐based analysis was performed by an anatomical expert. Distortion was quantified using Euclidean distance between each landmark pair and tagged by tissue interface: bone‐tissue, soft tissue, or air‐tissue. For baseline comparisons, an anthropomorphic phantom was imaged and analyzed. Results The average spatial discrepancy between CT and MR landmarks was 1.15 ± 1.14 mm for the phantom and 1.46 ± 1.78 mm for patients. The error histogram peaked at 0–1 mm. 66% of the discrepancies were <2 mm and 51% <1 mm. In the patient data, statistically significant differences (p‐values < 0.0001) were found between the different tissue interfaces with averages of 0.88 ± 1.24 mm, 2.01 ± 2.20 mm, and 1.41 ± 1.56 mm for the air/tissue, bone/tissue, and soft tissue, respectively. The distortion generally correlated with the in‐plane radial distance from the image center along the longitudinal axis of the MR. Conclusion Spatial distortion remains in the MR images after systematic distortion corrections. Although the average errors were relatively small, large distortions observed at bone/tissue interfaces emphasize the need for quantitative methods for assessing and correcting patient‐specific spatial distortions.

Keywords: radiotherapy system; distortion; guided radiotherapy; tissue

Journal Title: Journal of Applied Clinical Medical Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.