LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insensitivity of machine log files to MLC leaf backlash and effect of MLC backlash on clinical dynamic MLC motion: An experimental investigation

Photo from wikipedia

Abstract Purpose Multi‐leaf‐collimator (MLC) leaf position accuracy is important for accurate dynamic radiotherapy treatment plan delivery. Machine log files have become widely utilized for quality assurance (QA) of such dynamic… Click to show full abstract

Abstract Purpose Multi‐leaf‐collimator (MLC) leaf position accuracy is important for accurate dynamic radiotherapy treatment plan delivery. Machine log files have become widely utilized for quality assurance (QA) of such dynamic treatments. The primary aim is to test the sensitivity of machine log files in comparison to electronic portal imaging device (EPID)‐based measurements to MLC position errors caused by leaf backlash. The secondary aim is to investigate the effect of MLC leaf backlash on MLC leaf motion during clinical dynamic plan delivery. Methods The sensitivity of machine log files and two EPID‐based measurements were assessed via a controlled experiment, whereby the length of the “T” section of a series of 12 MLC leaf T‐nuts in a Varian Millennium MLC for a Trilogy C‐series type linac was reduced by sandpapering the top of the “T” to introduce backlash. The built‐in machine MLC leaf backlash test as well as measurements for two EPID‐based dynamic MLC positional tests along with log files were recorded pre‐ and post‐T‐nut modification. All methods were investigated for sensitivity to the T‐nut change by assessing the effect on measured MLC leaf positions. A reduced version of the experiment was repeated on a TrueBeam type linac with Millennium MLC. Results No significant differences before and after T‐nut modification were detected in any of the log file data. Both EPID methods demonstrated sensitivity to the introduced change at approximately the expected magnitude with a strong dependence observed with gantry angle. EPID‐based data showed MLC positional error in agreement with the micrometer measured T‐nut length change to 0.07 ± 0.05 mm (1 SD) using the departmental routine QA test. Backlash results were consistent between linac types. Conclusion Machine log files appear insensitive to MLC position errors caused by MLC leaf backlash introduced via the T‐nut. The effect of backlash on clinical MLC motions is heavily gantry angle dependent.

Keywords: mlc; machine; log files; mlc leaf; backlash

Journal Title: Journal of Applied Clinical Medical Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.